I have a few questions regarding the calculation of confidence intervals for lambda in the Royle-Nichols model. To start, Presence reports two different CI for lambda. The first one is in the "Site estimates" part. Unlike other parameters this does not seem to be estimated using +-1.96*SE on the betas. How are these CI estimated? Using a profile likelihood? In the Model parameters section the CI is calculated with +-1.96*SE on the real parameters.
My last question concerns the CI for the derrived parameter psi. Presence simply calculates it based on the estimate and SE of psi. This can result in upper CI >1 or lower CI<1. Wouldn't it be better to calculate the CI for psi based on the CI for lambda: CIpsi=1-exp(-CIlambda)? So for the example bellow the CI for psi would then be 0.656 - 0.923.
Thanks,
Mathias
Untransformed (beta) parameters:
Estimated parameter estimate std.err
-------------------------- -------- -------
beta0 = -2.5222 0.2440
beta1 = 0.1616 0.2234
Individual Site estimates of Lambda:
Site Survey Lambda Std.err 95% conf. interval
1 1 1 1-0: 1.1754 0.2626 1.0658 - 2.5588
============================================================
MODEL PARAMETERS:
Estimated parameter estimate std.err 95% confidence interval
-------------------------- -------- ------- ------------------------
Detection probability (r) = 0.0743 0.0168 0.0414 - 0.1072
Avg. abundance/sample unit(lambda) = 1.18 0.26 0.66 - 1.69
Derrived parameter estimate std.err 95% confidence interval
-------------------------- -------- ------- ------------------------
Occupancy (psi) = 0.6913 0.0811 0.5324 - 0.8502
Total Abundance (N) = 172.78 38.60 97.12 - 248.44