In a known fate model I have 4 groups with weekly encounter entries for a total of 20 entries or weeks for each group. I want to use the variance components procedure for S(t) model to obtain the process variance without samplng variance for use in a leslie matrix model. When I do the Beta-hat mean seems high and sigmas appear very small compared with data? Does this look right or what do I need to do to get process variance from weekly survival estimates? Thanks again. Tony
Beta-hat SE(Beta-hat)
------------------------
1.000000 0.000004
S-hat SE(S-hat) S-tilde SE(S-tilde) RMSE(S-tilde)
-------------------------------------------------------------
1.000000 0.000000 1.000000 0.000000 0.000000
0.982759 0.017092 0.999986 0.000014 0.017227
1.000000 0.000000 1.000000 0.000000 0.000000
1.000000 0.000000 1.000000 0.000000 0.000000
1.000000 0.000000 1.000000 0.000000 0.000000
1.000000 0.000000 1.000000 0.000000 0.000000
1.000000 0.000000 1.000000 0.000000 0.000000
0.982143 0.017697 0.999986 0.000014 0.017843
1.000000 0.000000 1.000000 0.000000 0.000000
1.000000 0.000000 1.000000 0.000000 0.000000
1.000000 0.000000 1.000000 0.000000 0.000000
1.000000 0.000000 1.000000 0.000000 0.000000
0.961538 0.026668 0.999980 0.000014 0.038441
1.000000 0.000000 1.000000 0.000000 0.000000
0.916667 0.039893 0.999970 0.000014 0.083304
0.904762 0.045295 0.999970 0.000014 0.095208
0.921053 0.043744 0.999975 0.000014 0.078922
0.971429 0.028160 0.999986 0.000014 0.028557
0.970588 0.028976 0.999986 0.000014 0.029397
1.000000 0.000000 1.000000 0.000000 0.000000
Naive estimate of sigma^2 = 0.0005461 with 95% CI (0.0001362 to 0.0016475)
Estimate of sigma^2 = 0.0000000 with 95% CI (0.0000000 to 0.0008469)
Estimate of sigma = 0.0000141 with 95% CI (0.0000087 to 0.0291009)
Trace of G matrix = 12.0041313