by sixtystrat » Fri Sep 13, 2013 12:07 pm
Yes that looks like my simulated data but not the real data. There were only 140 detections in the real data. It does look like a mixup. Here are the real estimates:
secr.fit( capthist = DeerCH, model = list(g0 ~ 1, sigma ~ t + h2), mask =
AAFBhabmask, buffer = 1500, CL = FALSE, detectfn = 0, groups = sex, method =
BFGS, trace = TRUE )
secr 2.3.2, 17:19:00 07 Nov 2012
Detector type proximity
Detector number 701
Average spacing 21.08923 m
x-range 584715.9 586079.1 m
y-range 115052.8 116039.4 m
Usage range by occasion
1 2 3 4 5
min 0 0 0 0 0
max 1 1 1 1 1
N animals : 33
N detections : 140
N occasions : 5
Mask area : 1359.956 ha
Model : D~1 g0~1 sigma~t + h2 pmix~h2
Fixed (real) : none
Detection fn : halfnormal
Distribution : poisson
N parameters : 9
Log likelihood : -695.198
AIC : 1408.396
AICc : 1416.222
...
Fitted (real) parameters evaluated at base levels of covariates
session = 1, h2 = 1, t = 1
link estimate SE.estimate lcl ucl
D log 0.06344873 0.01873779 0.03599820 0.11183171
g0 logit 0.04974865 0.00857506 0.03539103 0.06951121
sigma log 147.02180601 33.38283945 94.73957364 228.15609795
pmix logit 0.82577428 NA NA NA
session = 1, h2 = 1, t = 1
link estimate SE.estimate lcl ucl
D log 0.06344873 0.01873779 0.03599820 0.11183171
g0 logit 0.04974865 0.00857506 0.03539103 0.06951121
sigma log 147.02180601 33.38283945 94.73957364 228.15609795
pmix logit 0.82577428 NA NA NA
session = 1, h2 = 2, t = 1
link estimate SE.estimate lcl ucl
D log 0.06344873 0.01873779 0.03599820 1.118317e-01
g0 logit 0.04974865 0.00857506 0.03539103 6.951121e-02
sigma log 650.74380313 147.75818972 419.33364941 1.009858e+03
pmix logit 0.17422572 NA NA NA
session = 1, h2 = 2, t = 1
link estimate SE.estimate lcl ucl
D log 0.06344873 0.01873779 0.03599820 1.118317e-01
g0 logit 0.04974865 0.00857506 0.03539103 6.951121e-02
sigma log 650.74380313 147.75818972 419.33364941 1.009858e+03
pmix logit 0.17422572 NA NA NA