library(openCR)
# use internal robust-design dataset FebpossumCH, ignoring space
# 'bsession' is a within-session learned response; there's no 'bt' model in openCR
# model JSSAN treats session-specific population size N as the recruitment parameter
# compare to JSSAf and JSSAb
fit0 <- openCR.fit(FebpossumCH, type = 'JSSAN', model=list(N~session, p~1, phi~session))
fit1 <- openCR.fit(FebpossumCH, type = 'JSSAN', model=list(N~session, p~bsession, phi~session))
AIC(fit0, fit1)
# model npar rank logLik AIC AICc dAIC AICwt
# fit1 p~bsession phi~session N~session 19 19 -6456.613 12951.23 12953.24 0.000 0.9437
# fit0 p~1 phi~session N~session 18 18 -6460.432 12956.86 12958.67 5.637 0.0563
# and some estimates...
predict(fit1,all=T)$p
predict(fit1)$phi
predict(fit0)$N
predict(fit1)$N
modelAverage(fit0, fit1)[,,'N']
# estimate SE.estimate lcl ucl
# stratum=1,session=1,bsession=0 142.6529 11.99950 121.00590 168.1724
# stratum=1,session=2,bsession=0 148.1942 12.24567 126.07064 174.2002
# stratum=1,session=3,bsession=0 156.0441 12.63713 133.17603 182.8390
# stratum=1,session=4,bsession=0 161.9422 13.10215 138.23081 189.7210
# stratum=1,session=5,bsession=0 145.6133 12.40088 123.26538 172.0130
# stratum=1,session=6,bsession=0 122.1193 11.33958 101.83898 146.4382
# stratum=1,session=7,bsession=0 152.0306 12.62211 129.23578 178.8461
# stratum=1,session=8,bsession=0 154.0359 12.70098 131.08567 181.0042
# stratum=1,session=9,bsession=0 118.6720 11.15610 98.74261 142.6238
Users browsing this forum: No registered users and 0 guests