I changed the code to what you suggested, unfortunately the same ridiculous estimates, se and ci still came out of the model. It seems that every time c is included in the formula the estimates go a bit hay-wire.
The top 2 models both have c as a variable -
- Code: Select all
model npar AICc DeltaAICc weight
7 pi(~1)p(~mixture + time + c)c() 10 561.1849 0.000000 9.769305e-01
11 pi(~1)p(~time + c)c() 9 568.8016 7.616738 2.167255e-02
14 pi(~1)p(~time + mixture)c() 9 574.2852 13.100298 1.396916e-03
15 pi(~1)p(~time)c() 8 597.6915 36.506642 1.154907e-08
I'm quite confused as to why c would have such a huge impact on the estimates?
These are the top 2 rows of estimates from the top 4 models (lowest AIC values)
- Code: Select all
Model 7- Group N-hat Standard Error Lower Upper
--------- -------------- -------------- -------------- --------------
1 0.1093380E+012 0.3018018E+012 0.6158692E+010 0.1941128E+013
2 0.5466902E+011 0.1557737E+012 0.2966273E+010 0.1007561E+013
Model 11- Group N-hat Standard Error Lower Upper
--------- -------------- -------------- -------------- --------------
1 7.5080574 16.650958 2.2789217 110.77138
2 3.7540287 8.6303505 1.1337779 57.696001
Model 14- Group N-hat Standard Error Lower Upper
--------- -------------- -------------- -------------- --------------
1 3.6017476 3.9123595 2.1043912 26.576737
2 1.8019940 2.1350468 1.0471518 14.640914
Model 15- Group N-hat Standard Error Lower Upper
--------- -------------- -------------- -------------- --------------
1 2.0750044 0.2798602 2.0029899 3.8815591
2 1.0375496 0.1977010 1.0010348 2.3625755 Model 7-
Group N-hat Standard Error Lower Upper
--------- -------------- -------------- -------------- --------------
1 0.1093380E+012 0.3018018E+012 0.6158692E+010 0.1941128E+013
2 0.5466902E+011 0.1557737E+012 0.2966273E+010 0.1007561E+013
Should I just be rejecting these models as they are not realistic? Or is there something going on with my code or data?
Cheers!