I just ran a very simple CJS in MARK placing the identity link on both Phi and p. I've also removed the intercept from the design matrices so that parameters aren't estimated as offsets from the intercept. When looking at the output file I'm finding that the Beta estimates and real estimates are identical as expected, the Beta and real standard errors are identical as expected, but the Beta and real confidence intervals don't align. What's going on here ? These confidence intervals should align when placing no constraint on the parameters (i.e. using the identity link and removing the intercept from the design matrix), correct ?
From bottom of Mark Output file:
IDENTITY Link Function Parameters of { Phi(~-1 + time)p(~-1 + time) }
95% Confidence Interval
Parameter Beta Standard Error Lower Upper
------------------------- -------------- -------------- -------------- --------------
1:Phi:time1 0.5857530 0.0904862 0.4084000 0.7631059
2:Phi:time2 0.7128867 0.1138726 0.4896964 0.9360771
3:Phi:time3 0.7778674 0.1265650 0.5297999 1.0259348
4:p:time2 0.0149880 0.0029750 0.0091569 0.0208191
5:p:time3 0.4451827 0.0202556 0.4054817 0.4848837
6:p:time4 0.0613498 0.0108518 0.0400802 0.0826194
7:p:time5 0.2097905 0.0340483 0.1430559 0.2765251
Real Function Parameters of { Phi(~-1 + time)p(~-1 + time) }
95% Confidence Interval
Parameter Estimate Standard Error Lower Upper
-------------------------- -------------- -------------- -------------- --------------
1:Phi g1 c1 a0 t1 0.5857530 0.0904862 0.4050480 0.7459915
2:Phi g1 c1 a1 t2 0.7128867 0.1138726 0.4548747 0.8807850
3:Phi g1 c1 a2 t3 0.7778674 0.1265650 0.4545312 0.9363710
4:p g1 c1 a1 t2 0.0149880 0.0029750 0.0101470 0.0220869
5:p g1 c1 a2 t3 0.4451827 0.0202556 0.4059122 0.4851499
6:p g1 c1 a3 t4 0.0613498 0.0108518 0.0432227 0.0863927
7:p g1 c1 a4 t5 0.2097905 0.0340483 0.1507486 0.2842177
8:Phi g1 c1 a3 t4 1.0000000 0.0000000 1.0000000 1.0000000 Fixed