Page 1 of 1

Buffer Size and Region.N

PostPosted: Mon Sep 14, 2015 3:50 pm
by ctlamb
Hello,

I am looking to compare SECR-based estimates of population size to those estimated in program MARK. I am largely interested in qualitatively comparing and understanding the different processes that create the differences, as well as using the comparison as a double check of my work.


I undertand that the estimation of density can be influenced when the buffer is too small, so buffer only has to be large enough to encompass all individuals that use the area of interest. However, I am less clear on the effects of buffer size for region.N, as the buffer appears to have large effects on this parameter. I conducted the following comparison to highlight the modest differences in density, but major differences in N with changing buffer sizes.

My gut assumption would be that the most accurate buffer width for calculating N would be the buffer at which density estimates asymptote?, thus movements of all individuals are accounted for while not adding extra area? It appears to me density asymptotes at some buffer width, while N increases continually. Which may make sense if N is estimated as the derived density*area.


Code: Select all
#####With large Buffer

  ##Model 1
  SN.bear.fit1 <- secr.fit(SN.ALL,model=list(D~1, g0~1), buffer = 4 * RPSV(SN.ALL)$SN2010) 
  SN.bear.fit1
 
  link            estimate  SE.estimate          lcl          ucl
  D       log 4.731945e-05 1.082982e-05 3.038853e-05 7.368342e-05
  g0    logit 2.313856e-01 3.736411e-02 1.662727e-01 3.124413e-01
  sigma   log 8.994555e+03 1.128712e+03 7.040131e+03 1.149155e+04
 

  ##Check mask width
  mask.check(SN.bear.fit1)
 
            spacing
  buffer   2026.03395180444 1519.52546385333 1013.01697590222
  1e+05         -30.42934        -30.42934        -30.42934
  150000        -30.42934        -30.42934        -30.42934
  2e+05         -30.42934        -30.42934        -30.42934
 
  ##project abundance
  region.N(SN.bear.fit1)
 
  estimate      SE.estimate      lcl      ucl n
  E.N 62.27256    14.25208 39.99140 96.96762 9
  R.N 65.74089    11.86799 46.82338 94.12008 9


 
  #####With SMALL Buffer
 
  ##Model 2
  SN.bear.fit2 <- secr.fit(SN.ALL,model=list(D~1, g0~1), buffer = 1 * RPSV(SN.ALL)$SN2010) 
  SN.bear.fit2
 
  link     estimate         SE.estimate          lcl          ucl
  D       log 6.753998e-05 1.052341e-05 4.985740e-05 9.149392e-05
  g0    logit 2.126351e-01 3.624230e-02 1.501539e-01 2.921771e-01
  sigma   log 8.289553e+03 8.172233e+02 6.836258e+03 1.005180e+04
 
 
  ##Check mask width
  mask.check(SN.bear.fit2)
 
              spacing
  buffer       762.584034826112 571.938026119584 381.292017413056
  13339.587         -30.66813        -30.66110        -30.66131
  20009.3805        -30.29588        -30.29648        -30.29586
  26679.174         -30.26892        -30.26890        -30.26890
 
  ##project abundance
  region.N(SN.bear.fit2)
 
  estimate      SE.estimate      lcl      ucl n
  E.N 14.39947    2.243583 10.62956 19.50643 9
  R.N 12.04958         NaN      NaN      NaN 9

Re: Buffer Size and Region.N

PostPosted: Mon Sep 28, 2015 2:51 pm
by murray.efford
Yes, the bigger the region, the larger is N-hat. How could it be otherwise? region.N does allow you to fix the region independently of that used in the original model fit. I included closed-population N-hat in Fig 4 of Efford and Fewster 2013 to illustrate that this sort of comparison is meaningless: N means (almost) nothing unless you specify the region (area).
Murray