CJS phi(t) p(t) terminal phi's and p's not equal

I am currently working with some simple CJS models with 4 sampling occasions. I know that the terminal phi and p are confounded and both are estimated as the product of the two paramters (as per the dipper example). however, when i run the phi(t) p(t) model using the PIM chart i am getting slightly different values for the terminal p and phi. At first i was running with encounter histories (EH's) for all individuals (15,108), and now I have re-run with summarized EH's.
When i run the phi(t) p(t) model with the individual EH's i get:
Real Function Parameters of {Phi(t)p(t)}
95% Confidence Interval
Parameter Estimate Standard Error Lower Upper
------------------------- -------------- -------------- -------------- --------------
1:Phi 0.7068693 0.1060547 0.4692966 0.8680037
2:Phi 0.5787956 0.1044254 0.3724516 0.7608556
3:Phi 0.4312749 0.0000000 0.4312749 0.4312749
4:p 0.0381389 0.0069873 0.0265722 0.0544589
5:p 0.0297242 0.0057946 0.0202445 0.0434459
6:p 0.0374741 0.0000000 0.0374741 0.0374741
Results from the summarized EH's are:
Real Function Parameters of {phi(t) p(t)}
95% Confidence Interval
Parameter Estimate Standard Error Lower Upper
------------------------- -------------- -------------- -------------- --------------
1:Phi 0.7068695 0.1060547 0.4692968 0.8680039
2:Phi 0.5787963 0.1044254 0.3724520 0.7608563
3:Phi 0.1386189 44.311411 0.8951821E-309 1.0000000
4:p 0.0381389 0.0069873 0.0265722 0.0544589
5:p 0.0297241 0.0057946 0.0202445 0.0434458
6:p 0.1165903 37.269664 0.1276252E-308 1.0000000
My questions are:
1) Am i correct in concluding that the 0 SE's for the individual EH's and the large SE's for the summarized EH's indicate the data are too sparse to estimate the product of the terminal p and phi?
2) Why are the results different for summarized versus individual EH's?
When i run the phi(t) p(t) model with the individual EH's i get:
Real Function Parameters of {Phi(t)p(t)}
95% Confidence Interval
Parameter Estimate Standard Error Lower Upper
------------------------- -------------- -------------- -------------- --------------
1:Phi 0.7068693 0.1060547 0.4692966 0.8680037
2:Phi 0.5787956 0.1044254 0.3724516 0.7608556
3:Phi 0.4312749 0.0000000 0.4312749 0.4312749
4:p 0.0381389 0.0069873 0.0265722 0.0544589
5:p 0.0297242 0.0057946 0.0202445 0.0434459
6:p 0.0374741 0.0000000 0.0374741 0.0374741
Results from the summarized EH's are:
Real Function Parameters of {phi(t) p(t)}
95% Confidence Interval
Parameter Estimate Standard Error Lower Upper
------------------------- -------------- -------------- -------------- --------------
1:Phi 0.7068695 0.1060547 0.4692968 0.8680039
2:Phi 0.5787963 0.1044254 0.3724520 0.7608563
3:Phi 0.1386189 44.311411 0.8951821E-309 1.0000000
4:p 0.0381389 0.0069873 0.0265722 0.0544589
5:p 0.0297241 0.0057946 0.0202445 0.0434458
6:p 0.1165903 37.269664 0.1276252E-308 1.0000000
My questions are:
1) Am i correct in concluding that the 0 SE's for the individual EH's and the large SE's for the summarized EH's indicate the data are too sparse to estimate the product of the terminal p and phi?
2) Why are the results different for summarized versus individual EH's?