Dbradke wrote:Thank you both very much for your replies. I agree that it is not too difficult to approximate the variance for a ratio using the delta method, especially following the Powell (2007) paper (which was actually the main reference I was using – it’s a great source!). The issue is that I don’t think Ne and N are independent, so I think it may be misleading to use a covariance of zero. However, it seems like that might be the only option, aside from not reporting a variance at all. Thanks again!
cooch wrote:
So, your 'thought problem' would be, if you assume independence, what does that do to your estimate of the variance? [Not hard with a bit of thought...]
Larkin's paper is indeed very good -- a very convenient tabulation of some common transformations, some interesting worked out applications, and a fair treatment of the underlying machinery [for the full treatment, Appendix 2 in the MARK book -- definitely less accessible than Larkin's paper, but partly because is has a different intent. Appendix 2 spends a lot of time trying to explain 'how it works', not just 'what to do'. Knowing how the Delta method -- or anything else -- works is important for those situations that arise when the Delta method doesn't work well.].
The other small comment about Larkin's paper is that there are a few nasty little typos in some of the equations which can cause problems (not at all Larkin's fault -- there are lot of clues in the paper that suggest said typos emerged when the editorial types -- who don't use LaTeX much, it would seem -- tried to typeset the equations...).
For example, eq. 2 in the paper is not correct -- the double-summation in the second term should be of, not
(following Seber, 1982). In the incorrect version,
is the variance, not the covariance. The equation requires
to restrict it to covariances. And so on...
Return to analysis & design questions
Users browsing this forum: No registered users and 1 guest