Hi: I am using Presence to estimate occupancy rates of 13 forest birds based on interpretation of acoustic recordings. I have a maximum of 4 observations over a 2 - 5 day period, I collect site and survey specific detection covarates, and have about 290 observations. An example output is below.
For about 1/2 the species the GOF is good, but for the other half is poor. In almost every case the detection histories that differ from expected are 1111 (detected in every case) and 1000 (detected only in the first survey, but not the rest). In both cases it is always a higher than expected number of observations in the category. I've tried many different models, and results are always similar.
What might be the cause of the lack of fit? Could it be the movement pattern of the birds (detection distance is 100 m, but territories could be partially outside the detection distance)? Given that c-hat is generally < 6, how big an issue is this? Given lack of fit, is my best bet to use the psi(.)p(.) estimate, the naive estimate, or use the best model and adjust occupancy estimate by c-hat?
Thanks in advance for your thoughts on this.
--Rob
Assessing Model Fit for Single-season model:
History(cohort) Observed Expected Chi-square
0000( 0 0) 219.0000 218.318790923 0.00
0010( 0 22) 5.0000 3.657488431 0.49
1000( 0 52) 13.0000 3.657488431 23.86
000-( 1 54) 7.0000 7.871499268 0.10
00--( 2 80) 1.0000 0.814831002 0.04
0100( 0 120) 3.0000 3.657488431 0.12
0011( 0 126) 3.0000 4.148574702 0.32
0001( 0 129) 6.0000 3.657488431 1.50
1011( 0 139) 2.0000 4.705598495 1.56
011-( 1 144) 2.0000 0.313977773 9.05
010-( 1 145) 1.0000 0.276810749 1.89
0111( 0 151) 4.0000 4.705598495 0.11
1010( 0 176) 2.0000 4.148574702 1.11
0110( 0 183) 1.0000 4.148574702 2.39
1101( 0 187) 3.0000 4.705598495 0.62
1111( 0 193) 15.0000 5.337413158 17.49
1100( 0 194) 3.0000 4.148574702 0.32
1110( 0 275) 3.0000 4.705598495 0.62
Test Statistic = 71.6081 min(expect)=2.768107e-001
------------------------------------------------------
Test Statistic (data) = 71.6081
From 10000 parametric bootstraps...
Probability of test statistic >= observed = 0.0004
Estimate of c-hat = 3.0952 (=TestStat/AvgTestStat)