Hi,
I am trying to analyse my data using a single-season multi-method approach with 2 detection methods, 6 surveys across 71 sites. I am only interested in determining the detection probability and how these differ between the two detection methods. As such I have a constant model, psi(.) theta(.) p(.), and one which p differs with method, psi(.)theta(.)p(Method).
The model output for a species for the method model produces different p values for the two detection methods across the different surveys. E.G.:
Site estimate Std.err 95% conf. interval
p[1-1] 1 GRASM10 : 0.6667 0.2722 0.1535 - 0.9566
p[1-2] 1 GRASM10 : 1.0000 0.0000 1.0000 - 1.0000
p[2-1] 1 GRASM10 : 0.0000 0.0000 0.0000 - 1.0000
p[2-2] 1 GRASM10 : 0.0000 0.0000 0.0000 - 1.0000
p[3-1] 1 GRASM10 : 0.5000 0.2500 0.1235 - 0.8765
p[3-2] 1 GRASM10 : 1.0000 0.0000 1.0000 - 1.0000
p[4-1] 1 GRASM10 : 0.0000 0.0000 0.0000 - 1.0000
p[4-2] 1 GRASM10 : 0.0000 0.0000 0.0000 - 1.0000
p[5-1] 1 GRASM10 : 0.0000 0.0000 0.0000 - 1.0000
p[5-2] 1 GRASM10 : 0.2853 0.2908 0.0238 - 0.8672
p[6-1] 1 GRASM10 : 0.0000 0.0000 0.0000 - 1.0000
p[6-2] 1 GRASM10 : 0.0000 0.0000 0.0000 - 1.0000
Therefore, what is the best way to report the p for each of the two methods (method 1 and method 2). Should I average the 3 values for each method or use the median?
Thank-you for any input anyone can offer!