I am attemping to use occupancy data collected from a camera trap array in order to estimate abundance of mountain lions. Running the abundance induced heterogeneity model produces extremely large estimates and confidence intervals for lambda and N. I believe this is due to a very low individual dectection probablility, resulting from few total observations. My question is: When is it appropriate to fix parameters, specifically "c"? I find that if I set "c" at the detection probability that is created from running other models (e.g. Single-season, 1 group, Constant P), then the model creates much more reasonable results.
Thank you for any help, or advice that you can provide. I'll post results from both tests below for reference.
~Katie
Total area of the study site is 342 square kilometers.
Running Model as is:
PRESENCE - Presence/Absence-Site Occupancy data analysis
Tue Jun 04 10:52:40 2013, Version 5.8_130315
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
==>i=groupedlocations_jantomarch.pao
==>l=pres_Abundance_Induced_Heterogeneity(Royle_Nichols_Het)_model.out
==>name=Abundance Induced Heterogeneity(Royle/Nichols Het) model
==>model=4100
==>j=f:\presence\groupedlocations_jantomarch_project\groupedlocations_jantomarch.dm
==>lmt=200
varcov: nsig=6 eps=1.000000e-002
model=4100 N,T-->12,18
********* Input Data summary *******
Number of sites = 12
Number of sampling occasions = 18
Number of missing observations = 0
Data checksum = 37141
NSiteCovs-->0
NSampCovs-->0
Primary periods=1 Secondary periods: 18
Naive occupancy estimate = 0.5000
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
groupedlocations jan-mar
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
N=12 T=18 Groups=1 bootstraps=0
-->1-18
Matrix 1: rows=2, cols=2
-,a1,
lambda 1
========================
Matrix 2: rows=19, cols=2
-,b1,
c(1) 1
c(2) 1
c(3) 1
c(4) 1
c(5) 1
c(6) 1
c(7) 1
c(8) 1
c(9) 1
c(10) 1
c(11) 1
c(12) 1
c(13) 1
c(14) 1
c(15) 1
c(16) 1
c(17) 1
c(18) 1
========================
Matrix 3: rows=0, cols=0
========================
Matrix 4: rows=0, cols=0
========================
Matrix 5: rows=0, cols=0
========================
Matrix 6: rows=0, cols=0
========================
modtype=4
Royle/Nichols Heterogeneity Model
Number of sites = 12
Number of sampling occasions = 18
Number of missing observations = 0
Number of parameters = 2
Number of parameters = 2
Number of function calls = 111
-2log(likelihood) = 61.7952
AIC = 65.7952
LikeNRSig=6 eps=0.01 ETA=1e-013
Untransformed Estimates of coefficients for covariates (Beta's)
======================================================================
estimate std.error
A1 lambda : 4.984163 7.839984
B1 c(1) : -8.396910 7.861688
============================================================
Individual Site estimates of <lambda>
Site estimate Std.err 95% conf. interval
lambda 1 site 1 :146.0812 1145.2744 0.0000 -688848493.1429
============================================================
Individual Site estimates of <c(1)>
Site estimate Std.err 95% conf. interval
c(1) 1 site 1 : 0.0002 0.0018 0.0000 - 0.9991
c(2) 1 site 1 : 0.0002 0.0018 0.0000 - 0.9991
c(3) 1 site 1 : 0.0002 0.0018 0.0000 - 0.9991
c(4) 1 site 1 : 0.0002 0.0018 0.0000 - 0.9991
c(5) 1 site 1 : 0.0002 0.0018 0.0000 - 0.9991
c(6) 1 site 1 : 0.0002 0.0018 0.0000 - 0.9991
c(7) 1 site 1 : 0.0002 0.0018 0.0000 - 0.9991
c(8) 1 site 1 : 0.0002 0.0018 0.0000 - 0.9991
c(9) 1 site 1 : 0.0002 0.0018 0.0000 - 0.9991
c(10) 1 site 1 : 0.0002 0.0018 0.0000 - 0.9991
c(11) 1 site 1 : 0.0002 0.0018 0.0000 - 0.9991
c(12) 1 site 1 : 0.0002 0.0018 0.0000 - 0.9991
c(13) 1 site 1 : 0.0002 0.0018 0.0000 - 0.9991
c(14) 1 site 1 : 0.0002 0.0018 0.0000 - 0.9991
c(15) 1 site 1 : 0.0002 0.0018 0.0000 - 0.9991
c(16) 1 site 1 : 0.0002 0.0018 0.0000 - 0.9991
c(17) 1 site 1 : 0.0002 0.0018 0.0000 - 0.9991
c(18) 1 site 1 : 0.0002 0.0018 0.0000 - 0.9991
============================================================
MODEL PARAMETERS:
Estimated parameter estimate std.err 95% confidence interval
-------------------------- -------- ------- ------------------------
Avg. abundance/sample unit(lambda) : 146.08 0.00 0.00 -688848493.14
Individual Detection prob c(1) : 0.0002 0.0018 -0.0032 - 0.0037
Individual Detection prob c(2) : 0.0002 0.0018 -0.0032 - 0.0037
Individual Detection prob c(3) : 0.0002 0.0018 -0.0032 - 0.0037
Individual Detection prob c(4) : 0.0002 0.0018 -0.0032 - 0.0037
Individual Detection prob c(5) : 0.0002 0.0018 -0.0032 - 0.0037
Individual Detection prob c(6) : 0.0002 0.0018 -0.0032 - 0.0037
Individual Detection prob c(7) : 0.0002 0.0018 -0.0032 - 0.0037
Individual Detection prob c(8) : 0.0002 0.0018 -0.0032 - 0.0037
Individual Detection prob c(9) : 0.0002 0.0018 -0.0032 - 0.0037
Individual Detection prob c(10) : 0.0002 0.0018 -0.0032 - 0.0037
Individual Detection prob c(11) : 0.0002 0.0018 -0.0032 - 0.0037
Individual Detection prob c(12) : 0.0002 0.0018 -0.0032 - 0.0037
Individual Detection prob c(13) : 0.0002 0.0018 -0.0032 - 0.0037
Individual Detection prob c(14) : 0.0002 0.0018 -0.0032 - 0.0037
Individual Detection prob c(15) : 0.0002 0.0018 -0.0032 - 0.0037
Individual Detection prob c(16) : 0.0002 0.0018 -0.0032 - 0.0037
Individual Detection prob c(17) : 0.0002 0.0018 -0.0032 - 0.0037
Individual Detection prob c(18) : 0.0002 0.0018 -0.0032 - 0.0037
Derived parameter estimate std.err 95% confidence interval
-------------------------- -------- ------- ------------------------
Occupancy (psi) : 1.0000 0.0000 0.0000 - 1.0000
Total Abundance (N) : 1752.97 13743.30 0.00 -8266181917.71
------------------------------------------------------
CPU time= 1.0 seconds
Running model with fixed c:
Number of missing observations = 0
Number of parameters = 2
Number of parameters = 2
Number of function calls = 31
-2log(likelihood) = 64.1597
AIC = 68.1597
LikeNRSig=6 eps=0.01 ETA=1e-013
Untransformed Estimates of coefficients for covariates (Beta's)
======================================================================
estimate std.error
A1 lambda : 0.189582 0.402697
B1 c(1) : 0.000000 10.000000
============================================================
Individual Site estimates of <lambda>
Site estimate Std.err 95% conf. interval
lambda 1 site 1 : 1.2087 0.4868 0.5490 - 2.6614
============================================================
Individual Site estimates of <c(1)>
Site estimate Std.err 95% conf. interval
c(1) : 0.0324 0.0000 0.0000 - 0.0000 fixed
c(2) : 0.0324 0.0000 0.0000 - 0.0000 fixed
c(3) : 0.0324 0.0000 0.0000 - 0.0000 fixed
c(4) : 0.0324 0.0000 0.0000 - 0.0000 fixed
c(5) : 0.0324 0.0000 0.0000 - 0.0000 fixed
c(6) : 0.0324 0.0000 0.0000 - 0.0000 fixed
c(7) : 0.0324 0.0000 0.0000 - 0.0000 fixed
c(8) : 0.0324 0.0000 0.0000 - 0.0000 fixed
c(9) : 0.0324 0.0000 0.0000 - 0.0000 fixed
c(10) : 0.0324 0.0000 0.0000 - 0.0000 fixed
c(11) : 0.0324 0.0000 0.0000 - 0.0000 fixed
c(12) : 0.0324 0.0000 0.0000 - 0.0000 fixed
c(13) : 0.0324 0.0000 0.0000 - 0.0000 fixed
c(14) : 0.0324 0.0000 0.0000 - 0.0000 fixed
c(15) : 0.0324 0.0000 0.0000 - 0.0000 fixed
c(16) : 0.0324 0.0000 0.0000 - 0.0000 fixed
c(17) : 0.0324 0.0000 0.0000 - 0.0000 fixed
c(18) : 0.0324 0.0000 0.0000 - 0.0000 fixed
============================================================
MODEL PARAMETERS:
Estimated parameter estimate std.err 95% confidence interval
-------------------------- -------- ------- ------------------------
Avg. abundance/sample unit(lambda) : 1.21 0.00 0.55 - 2.66
Individual Detection prob c(1) : 0.0324 0.0000 0.0324 - 0.0324
Individual Detection prob c(2) : 0.0324 0.0000 0.0324 - 0.0324
Individual Detection prob c(3) : 0.0324 0.0000 0.0324 - 0.0324
Individual Detection prob c(4) : 0.0324 0.0000 0.0324 - 0.0324
Individual Detection prob c(5) : 0.0324 0.0000 0.0324 - 0.0324
Individual Detection prob c(6) : 0.0324 0.0000 0.0324 - 0.0324
Individual Detection prob c(7) : 0.0324 0.0000 0.0324 - 0.0324
Individual Detection prob c(8) : 0.0324 0.0000 0.0324 - 0.0324
Individual Detection prob c(9) : 0.0324 0.0000 0.0324 - 0.0324
Individual Detection prob c(10) : 0.0324 0.0000 0.0324 - 0.0324
Individual Detection prob c(11) : 0.0324 0.0000 0.0324 - 0.0324
Individual Detection prob c(12) : 0.0324 0.0000 0.0324 - 0.0324
Individual Detection prob c(13) : 0.0324 0.0000 0.0324 - 0.0324
Individual Detection prob c(14) : 0.0324 0.0000 0.0324 - 0.0324
Individual Detection prob c(15) : 0.0324 0.0000 0.0324 - 0.0324
Individual Detection prob c(16) : 0.0324 0.0000 0.0324 - 0.0324
Individual Detection prob c(17) : 0.0324 0.0000 0.0324 - 0.0324
Individual Detection prob c(18) : 0.0324 0.0000 0.0324 - 0.0324
Derived parameter estimate std.err 95% confidence interval
-------------------------- -------- ------- ------------------------
Occupancy (psi) : 0.7014 0.1453 0.4225 - 0.9302
Total Abundance (N) : 14.50 5.84 6.59 - 31.94
------------------------------------------------------
CPU time= 1.0 seconds