Thanks again.
Joe
Output from Huggins robust design:
- Code: Select all
estimate se lcl ucl var pred
-0.7805226 0.7506744 -2.2518445 0.6907993 0.5635120548 S:(Intercept)
-4.6189001 2.0282830 -8.5943350 -0.6434653 4.1139319281 S:grass
0.0120384 0.0295291 -0.0458387 0.0699155 0.0008719677 S:shrub
0.7729132 0.5820680 -0.3679401 1.9137665 0.3388031566 S:season2014
0.1835990 0.0894282 0.0083198 0.3588782 0.0079974030 S:grass:shrub
Calculate odds ratio and 95% CI for interaction, grass*shrub:
- Code: Select all
# Different values of shrub cover
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
s.cov0 <- 0; s.cov15 <- 15; s.cov30 <- 30
# 1) Mean log(odds) for grass effect at constant shrub value
# Formula: grass beta + (interaction beta * shrub cover value)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
grass.shrub.0 <- -4.6189001 + (0.1835990*s.cov0)
grass.shrub.15 <- -4.6189001 + (0.1835990*s.cov15)
grass.shrub.30 <- -4.6189001 + (0.1835990*s.cov30)
# 2) Variance of betas:
#~~~~~~~~~~~~~~~~~~~~~~
top.betas <- model$results$beta
top.betas$var <- top.betas$se^2
top.betas$pred <- row.names(top.betas)
grass.var <- top.betas$var[top.betas$pred == "grass"]
grassXshrub.var <- top.betas$var[top.betas$pred == "grass:shrub"]
# 3) Covariance between grass beta (2) and interaction beta (5)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
grass.grassXshrub.cov <- model$results$beta.vcv[2, 5]
# 4) Calculate 95% CI for OR at different shrub values
# Shrub = 15
#~~~~~~~~~~~
grass.shrub.15.var <- grass.var + ((s.cov15^2)*grassXshrub.var) - ((2*s.cov15)*grass.grassXshrub.cov)
log.CI.15 <- 1.96 * sqrt(grass.shrub.15.var)
exp(grass.shrub.15 - log.CI.15) # 0.000227
exp(grass.shrub.15 + log.CI.15) # 105.501
# Shrub = 30
#~~~~~~~~~~~~
grass.shrub.30.var <- grass.var + ((s.cov30^2)*grassXshrub.var) - ((2*s.cov30)*grass.grassXshrub.cov)
log.CI.30 <- 1.96 * sqrt(grass.shrub.30.var)
exp(grass.shrub.30 - log.CI.30) # 0.00026
exp(grass.shrub.30 + log.CI.30) # 22181.41